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Meet the Presenter
Dr Flore Villaret recently completed her PhD at the French Atomic Energy Commission 
(CEA) in the field of materials sciences (metallurgy). She is now a research engineer at the 
R&D Department of Electricité de France (EDF). She works on developing additive 
manufacturing of metal components for energy applications such as nuclear reactors and 
hydraulic power generation. She is also vice president of the French metallurgy and 
material society young division.
She won the 2021 “Pitch your Gen IV Research” competition with a very creative and 
original video presenting her PhD work in additive manufacturing metallurgy for Gen IV 
reactors (available at https://www.youtube.com/watch?v=v2IiEHMVyGc ). She was also 
awarded by the French metallurgy and material society with the Bodycote best PhD thesis 
award.

Email: flore.villaret@edf.fr

https://www.youtube.com/watch?v=v2IiEHMVyGc
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Examples of materials for nuclear reactors

• Diverse operating conditions depending on 
the location in the reactor : 
– Different temperatures

(for ex. water from primary circuit : ~300°C, fuel rods : 
~ 650 °C)

– Corrosion
– Irradiation 
– …

• Different metallic materials required
• Need to join them together, mainly by welding
• Possibility to use metallic additive 

manufacturing

Ni base 
alloys

Austenitic
steels

other

Primary circuit
316 L / 304L

Zr alloy
UO2

Control rods
B4C

pressurizer
Aciers F/M et 

308L/309L

vessel
16MND5 

Steam generator
18MND5

Inco 690

308L/309L

Pumps
F/M steels and 

304L/316L

Core
structures

304L

Martensitic or 
bainitic steels
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Additive manufacturing for present and future nuclear reactors
Already in use Future

Adding a pipe connection

SFR sodium flow grid

PBF

DED

SFR fuel rod stowage device

Valve stopper

PBF
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Example studied here : spike/HT welds in SFR
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spike/HT welds in SFR

Without filling metal

• Risk of cold cracking in the melted 
area pre-heating part is required

• Post welding heat treatment 
required for martensite tempering

Martensitic cold 
cracking risk

Hot cracking risk

Grain growth
embrittlement

Sigma phase embrittlement after
heat treatment

ZF
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Industrial solution : TIG welding with inconel 82 filling metal

ZF

Hot cracking risk
-> good process control required

Joining by TIG weldingWith filling metal

Martensitic cold 
cracking risk

Hot cracking risk

Grain growth
embrittlement

Sigma phase 
embrittlement after 
heat treatment 8
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Generic development of alternative solutions to TIG welding
• Dissimilar Electron Beam welding

• Alternatives solutions : « traditional » powder metallurgy
– Graded part made by SPS (Spark Plasma Sintering) or HIP (Hot Isostatic Pressing)

• For each process SPS or HIP :
• Homogeneous materials
• Direct assembly
• Mix 
• Mix assembly

9
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Generic development of alternative solutions to TIG welding

• Alternative solutions : additive manufacturing
– Assembly with a graded connexion obtained by additive manufacturing or directly built on part by 

DED (Direct Energy Deposition) or PBF (Powder Bed Fusion)

• For each processes PBF or DED :
• Homogeneous materials
• « direct » graded part
• Progressive graded part

10
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Outlines
I. Materials : powder used for the study

II. Additive manufacturing

1) 316L and Fe-9Cr-1Mo homogeneous materials

2) Graded materials

III.Conclusions and perspectives

316L Fe-9Cr-1Mo
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Outlines
I. Materials : powder used for the study

II. Additive manufacturing

1) 316L and Fe-9Cr-1Mo homogeneous materials

2) Graded materials

III.Conclusions and perspectives

316L Fe-9Cr-1Mo
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Austenitic steel 316L

u Between 16 and 19 % Cr (stainless)

u Between 10 and 13 % Ni (austenitic, CFC)

u L for « low carbon » -> maximum 0,03 %C 
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Martensitic steel Fe-9Cr-1Mo

u Around 9 %Cr et 1 %Mo

u Around 0,1 %C

u Martensitic (CC) -> resistant to irradiation 
swelling and satisfying mechanical
properties under service temperature

C Cr Mo Ni Mn Si N O

0,10 9,3 1,04 0,22 0,48 0,28 0,004 0,047
% mass, supplied by Nanoval

Different phases depending on temperature
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Fe-9Cr-1Mo martensitic steel
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I. Materials : powder used for the study

II. Additive manufacturing

1) 316L and Fe-9Cr-1Mo homogeneous materials

2) Graded materials

III.Conclusions and perspectives

316L Fe-9Cr-1MoOutlines
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Two processes compared
PBF-LB

DED-LB

Building direction (BD)Fe-9Cr-1Mo

PBF DED

Surface Energy density (P/v.Dspot) 
(J/mm²) 10 57 

Volume energy density 
(P/v.Dspot.h)(J/mm3) 500 285

Adapted from Vasquez E., 2019;

Laser beam
Constructed 
partrecoater

Building platePowder supply

Optics and hatching 
system
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316L – additive manufacturing

• austenitic
• Typical microstructure for 

AM 316L BD

SD

BD

Austenite Austenite

316L
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Fe-9Cr-1Mo – additive manufacturing

• DED = martensitic
• PBF more surprising: ferrite + 

martensite
 In depth study required for this 
ferritic/martensitic microstructure

Martensite Ferrite + martensite

BD

SD

BD

Fe-9Cr-1Mo

19



GEN IV International Forum

Additive manufacturing of martensitic ferritic steels ?

S. Vunnam et al. 2019: 17-4PH by PBF same processing parameters different powders

Z. Xia et al. 2020: Reduced activation martensitic steel (9Cr-1W) by DED 

Y. Sun et al. 2020: 17-4PH by PBF same powder, same parameters, different wall thicknesses
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Let’s study something simpler: powder microstructure

Faster cooling

faster coolingmore ferrite !
Contradiction with the usual CCT diagram

Pryds and Pedersen 2002:
12Cr-1Mo-0.2C martensitic (?) steel powderFe-9Cr-1Mo powder

~4.105 °C/s

~2.104 °C/s
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Link with additive manufacturing

M. Ma, Z. Wang, et X. Zeng, « A comparison on metallurgical behaviors of 316L stainless steel 
by selective laser melting and laser cladding deposition », Mater. Sci. Eng. A, vol. 685, p. 
265-273, 2017 

PBF cooling ~ 100 x faster than DED

Increasing cooling rate is decreasing the martensite
fraction in powder and in additive manufacturing 

(very fast cooling rates)

22



GEN IV International Forum

Fe-9Cr-1Mo equilibrium phase diagram
• At equilibrium:

– Delta ferrite solidification

– δ -> γ transformation

– M23C6 precipitation

– γ -> α transformation (usually replaced by martensite)

Liquid + δ

δ

δ + γ

Cr mass %

TδAe5

Ae4

Ae3
Ae1

Ms

Pseudo-binary diagram for Fe- x Cr-1Mo
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Can we by-pass austenite ?

Cr mass %

TδAe5

Ae4

Ae3
Ae1

Ms

Liquid + δ

δ

δ + γ

Pseudo-binary diagram for Fe- x Cr-1Mo

u It is mainly the time spent between Ae5 and Ae1 
which controls the austenite formation

- Let’s assume an austenite nucleus is immediately formed at 
Ae5 and study how it will grow

- Austenite growth is manly controlled by diffusion
- Very fast cooling rates  only interstitial elements (C, N) 

have time to diffuse
- In our Fe-9Cr-1Mo : 4 ppm of N vs 1000 ppm of C  only C 

diffusion is considered

δ
δ

δ
δ γ δ

δ

δ
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Can we by-pass austenite ?

• Strong effect of the cooling rate on the growth on an austenite nucleus

• In DED : time spent between Ae5 and Ae3 (60 ms) is sufficient to allow 
austenite to grow until δ ferrite disappear

• In PBF : time spent between Ae5 and Ae3 is too short (6 ms), only small 
austenite grains are formed and δ ferrite remains
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Summary and link with microstructures

BD

Ms

α + γ

M 

δ

δ  δ + γ (Ae5)
δ + γ γ (Ae4)

Ae3
Ae1

γ

Time (log scale)

Te
m

pe
ra

tu
re

S. Vunnam et al. 2019: 17-4PH, PBF

u A very precise control of the chemical composition 
and the building parameters is required to control 
the as built microstructure of martensitic steels in 
AM

u This model could be used to set a relation between
composition and cooling speed to control the 
microstructure

u Delta ferrite usually avoided in welds (decrease impact 
strength and lower mechanical properties after ageing)

u Better resistance under irradiation of martensitic 
structures

Results published in 
F. Villaret, X. Boulnat, P. Aubry, J. Zollinger, D. Fabrègue, et Y. de Carlan, « Modelling of delta 
ferrite to austenite phase transformation kinetics in martensitic steels: Application to rapid
cooling in additive manufacturing », Materialia, vol. 18, p. 101157, août 2021, doi: 
10.1016/j.mtla.2021.101157. 26

https://doi.org/10.1016/j.mtla.2021.101157
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Summary and link with microstructures
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S. Vunnam et al. 2019: 17-4PH, PBF

u A very precise control of the chemical composition 
and the building parameters is required to control 
the as built microstructure of martensitic steels in 
AM

u This model could be used to set a relation between
composition and cooling speed to control the 
microstructure

u Delta ferrite usually avoided in welds (decrease impact 
strength and lower mechanical properties after ageing)

u Better resistance under irradiation of martensitic 
structures

Results published in 
F. Villaret, X. Boulnat, P. Aubry, J. Zollinger, D. Fabrègue, et Y. de Carlan, « Modelling of delta 
ferrite to austenite phase transformation kinetics in martensitic steels: Application to rapid
cooling in additive manufacturing », Materialia, vol. 18, p. 101157, août 2021, doi: 
10.1016/j.mtla.2021.101157. 27

https://doi.org/10.1016/j.mtla.2021.101157
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Let’s go back to PBF microstructure

• Last layer ferritic
• Previous layers austenitized several times  martensite

Scheme of the thermal cycle on a given layer

BD

PBF

Fe-9Cr-1Mo

Te
m

pe
ra

tu
re

Time

Tf = 1450°C

Ae3 = 900°C

Ms = 380°C

Ferrite δ -> γ = 1250°C
T° max.

End of the build
T° min
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I. Materials : powder used for the study

II. Additive manufacturing

1) 316L and Fe-9Cr-1Mo homogeneous materials

2) Graded materials

III.Conclusions and perspectives

316L Fe-9Cr-1MoOutlines
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Link between compositions and microstructures

• Change from austenite to martensite 
• Many different microstructures in few millimeters
• Possible to form A+M+F mix

A

F

Schaeffler diagram Pseudo binary diagram at equilibrium 316L/ Fe-9Cr-1Mo 
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PBF gradient material ?

• Filling the powder reserve with 2 materials
• Junctions without defects
• Possibility to control the extent of the 

gradient by the filling method
• Microstructure change at the place of the 

chemical gradient : A -> M -> M+F

Fe-9Cr-1Mo

316L

DFCEA Saclay

Laser beam

Constructed 
partrecoater

Building plate

Optics and hatching 
system
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Matériaux à gradient par DED-LB

• Building parameters optimized for 316L
• P and v kept constant for 316L and Fe-9Cr-

1Mo
• D varies from a sample to another to control 

the layer height
• Composition is controlled at each layer by the 

powder flow

PIMM, Arts et Métiers Paris
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Dilution in additive manufacturing
• In AM, dilution = overlap rate between two beads (remelting rate)
 Concept used a lot in welding 

Dilution: 𝐷𝐷 =
ℎ0 − ∆ℎ

ℎ0

Composition of layer n+1, Cn+1 :
𝐶𝐶𝑛𝑛+1 = 𝐶𝐶𝑛𝑛 × 𝐷𝐷 + 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (1 − 𝐷𝐷)

With P = 400 W and v = 300 mm/min kept constant, D is function of powder flow (g/min)

Power
(W) 

Scannin
g speed 
(mm/s)

316L flow
(g/min)

Fe-9Cr-
1Mo flow 
(g/min)

Layer 
height (µm) Dilution

Volume 
energy
density

400 5
4 2 200 80 % 285

12 10 600 50 % 95
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Theoretical composition in the gradient calculated with the dilution

• Dilution 80 % : gradual change of the 
composition even with a direct change of 
powder

• Dilution 50 % : more abrupt change of 
composition  it could be useful to 
introduce layers of intermediate composition
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Theoretical composition in the gradient calculated with the dilution

• Dilution 80 % : gradual change of the 
composition even with a direct change of 
powder

• Dilution 50 % : more abrupt change of 
composition  it could be useful to 
introduce layers of intermediate composition
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Dilution 50 %, gradual powder change in 5 layers

• Gradient over several mm
• Good correlation between measured/calculated gradient
• Evolution of the austenite fraction with the composition

Austenite (FCC)
Martensite (BCC)

SD BD

Calculated profile
EDX profile

Austenite 68 %
Martensite 32 %

Austenite 5 %
Martensite 95 %

Austenite 99.6 %
Martensite 0.04 %

Austenite 0.1 %
Martensite 99.9 %

Fe-9Cr-1Mo316L Gradient
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Dilution 50 %, gradual powder change in 5 layers

HV
 0

,0
5

SD

BD

Fe-9Cr-1Mo 
(softer martensite)

316L Gradient

Calculated profil
EDX profil

Hardness map
after building

Austenite 68 %
Martensite 32 %

Austenite 99.6 %
Martensite 0.04 %

Austenite 5 %
Martensite 95 %

Austenite 0.1 %
Martensite 99.9 %

230 HV 340 HV440 HV250 HV 410 HV
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Comparison between the different gradients

• DED allows a wide control of the chemistry in the gradient through parameters and introduction of powder 
mix

• Short gradients can be obtained in PBF (low layer height)
• SPS and HIP sintering processes allow to obtain short gradients (diffusion)
• Possibility to control and anticipate the chemistry and the length of the gradient in DED by :

– The blown composition (chemistry)
– The dilution rate used (manufacturing parameters)

DED-LB 

DED-LB gradients

High dilution
Directe change
Change in 5 layers Low 

dilution

EB weld

HIP

SPS

PBF-LB

HIP

SPS

PBF-LB

DED-LB 

EB weld
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I. Materials : powder used for the study

II. Additive manufacturing

1) 316L and Fe-9Cr-1Mo homogeneous materials

2) Graded materials

III.Conclusions and perspectives

316L Fe-9Cr-1MoOutlines
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Conclusions : microstructure

• Relationships between composition and cooling
rate : microstructure control in martensitic steels

• Metallurgical continuity assured between the 
two materials

• Diverse microstructures depending on the 
process used
– Local melting with welding
– Transformation of the whole material without

melting with SPS/HIP
– Transformation of the whole material with melting

in AM
• Links between chemistry – microstructure –

microhardness
• Prediction and control of chemistry in DED
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Conclusions : tensile tests

• Similar macroscopic behavior
• Failure on the 316L side at 20°C and 400°C, on the Fe-9Cr-1Mo side at 550°C
• Encouraging results for the use of these materials in an industrial context
• Need for a more complete evaluation of these junctions

• After heat treatment 630 °C/8 h
Room temperature 550 °C

EB weld

EB weld

HIP

HIP

Strain (%)

St
re

ss
 (M

Pa
)

Strain (%)

St
re

ss
 (M

Pa
)

41



GEN IV International Forum

Proposals for further studies

u Corrosion

u Irradiation
J. Nie et al, Addit. Manuf. 35 (2020)

Gradient 316L/SS431 
(martensitic at 18 %Cr)

Alloy 800H = 21 %Cr et 34 % Ni (γ)

u Toughness

Zuback, J. S et al. (2019), J. of
Alloys and Compounds.

u Aging (carbon diffusion, introduction 
of a barrier material)
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Toward the fourth dimension…

P. Hosemann, NUMAT 2020

Toward the fourth dimension…
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Flore Villaret
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77250 – Moret sur Loing 
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Upcoming Webinars
Date24 Title Presenter

27 January 2022 ESFR SMART a European Sodium 
Fast Reactor concept including the 
European feedback experience and the 
new safety commitments following 
Fukushima accident

Mr. Joel Guidez, CEA, France

24 February 2022 AI in support of NE Sector Prof. Nawal Prinja, Jacobs, UK

23 March 2022 Scale Effects and Thermal-Hydraulics: 
Application to French SFR

Mr. Benjamin Jourdy, CEA, 
France
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